UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/01

Paper 1 Multiple Choice

October/November 2004

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the answer sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C**, and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate answer sheet.

Read the instructions on the answer sheet very carefully.

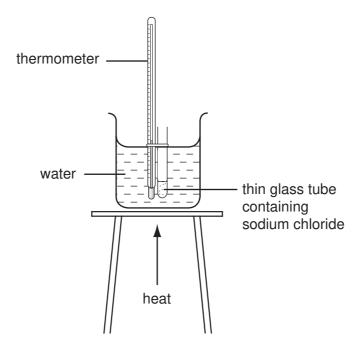
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

You may use a calculator.

This document consists of 16 printed pages.


[Turn over

- 1 When steam at 100 °C condenses to water at 25 °C, what happens to the water molecules?
 - **A** They move faster and closer together.
 - **B** They move faster and further apart.
 - **C** They move slower and closer together.
 - **D** They move slower and further apart.
- 2 The melting points and boiling points of four substances are shown.

Which substance is liquid at 100 °C?

substance	melting point/°C	boiling point/°C
Α	-203	-17
В	-25	50
С	11	181
D	463	972

3 The apparatus shown **cannot** be used to determine the melting point of sodium chloride, Na $^+$ C l^- .

Why is this?

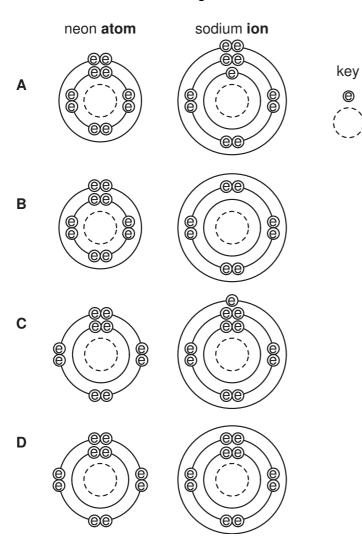
	melting point of sodium chloride is greater than 100°C	sodium chloride dissolves in the water
Α	✓	✓
В	✓	X
С	×	✓
D	×	X

4 A student wishes to extract a coloured solution from some berries to make an indicator solution.

Which of the listed instructions should the student follow?

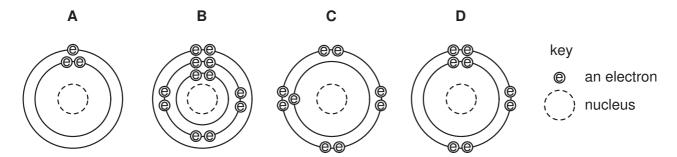
1	crush the berries			
2	add acid			
3	add a solvent			
4	filter the mixture			
5	distil the filtrate			

- **A** 1, 2 and 4
- **B** 1, 3 and 4
- **C** 2, 3 and 5
- **D** 2, 4 and 5


electron

nucleus

5 Hydrogen and helium have isotopes, as shown.


In which of these isotopes does the nucleus have twice as many neutrons as protons?

- $A \frac{2}{1}H$
- **B** ${}_{1}^{3}$ H
- \mathbf{C} ³₂He
- $D \frac{4}{2}He$
- 6 How are the electrons arranged in a neon **atom**, Ne, and a sodium **ion**, Na⁺?

- 7 Which compound has ionic bonds?
 - A hydrogen chloride
 - **B** methane
 - C sodium chloride
 - **D** water

8 Which diagram shows an atom in the same group of the Periodic Table as sodium?

9 When propane is burned, carbon dioxide and water are formed, as shown.

$$C_3H_8 + 5O_2 \rightarrow rCO_2 + sH_2O$$

Which values of *r* and *s* balance the equation?

	r	s
Α	1	3
В	1	5
С	3	4
D	3	8

10 Which formula represents a compound containing three atoms?

A HNO₃

 \mathbf{B} H_2O

C LiF

D ZnSO₄

11 A substance **X** is heated in an evaporating basin until there is no further change.

	mass of basin and contents
before heating	25.52 g
after heating	26.63 g

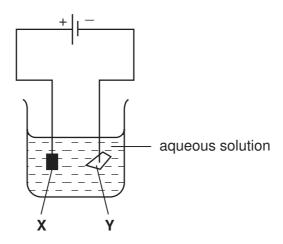
What could X be?

A copper

B copper(II) carbonate

C copper(II) oxide

D hydrated copper(II) sulphate

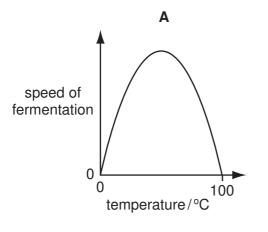

12 Aluminium is extracted from its oxide by electrolysis.

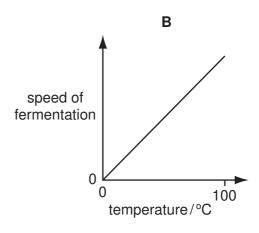
Which words correctly complete the spaces?

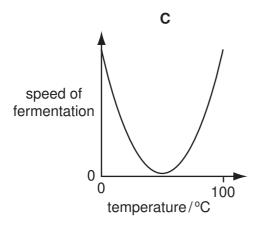
The oxide is dissolved in1..... cryolite and aluminium is deposited at the2......

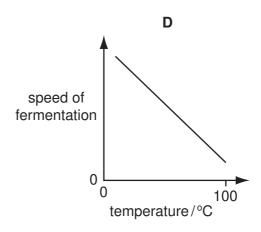
	space 1	space 2
Α	aqueous	negative cathode
В	aqueous	positive anode
С	molten	negative cathode
D	molten	positive anode

13 The diagram shows an electrolysis experiment using metals **X** and **Y** as electrodes.


One of the metals becomes coated with copper.


Which metal becomes coated and which aqueous solution is used?


	metal	aqueous solution
Α	х	CrC <i>l</i> ₃
В	X	CuC <i>l</i> ₂
С	Y	$CrC\mathit{l}_3$
D	Υ	CuC <i>l</i> ₂


14 The solvent ethanol is produced by the fermentation of sugar, using yeast.

Which graph correctly shows how the speed of fermentation changes with temperature?

- 15 In which process does an endothermic change take place?
 - A combustion
 - **B** evaporation
 - **C** filtration
 - **D** neutralisation

16 The sign \rightleftharpoons is used in some equations to show that a reaction can be reversed.

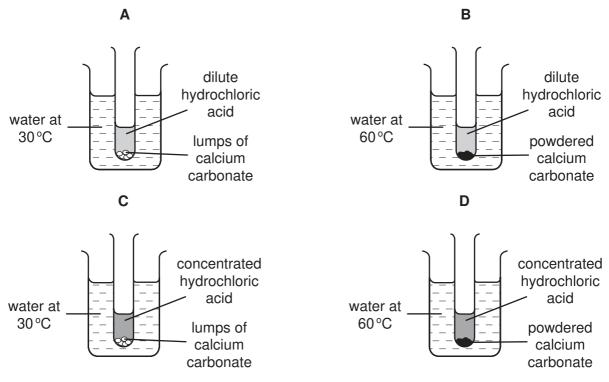
Two incomplete equations are given.

	reagents	products
Р	CoCl ₂ + 2H ₂ O	CoCl ₂ . 2H ₂ O
Q	C + O ₂	CO ₂

For which of these reactions can a \rightleftharpoons sign be correctly used to complete the equation?

	Р	Q
Α	✓	✓
В	✓	X
С	X	✓
D	X	X

17 In which reaction does reduction of the underlined substance take place?


A $Cu_2O + C \rightarrow 2Cu + CO$

 $\textbf{B} \quad \underline{2Cu_2O} + O_2 \rightarrow 4CuO$

C $2Cu + O_2 \rightarrow 2CuO$

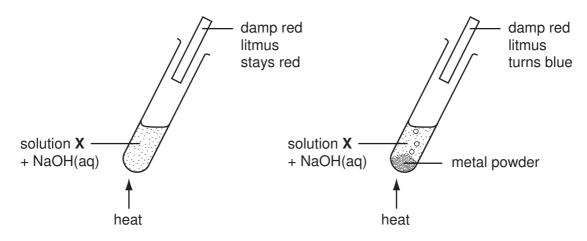
D $CuO + \underline{CO} \rightarrow Cu + CO_2$

18 In which experiment is the rate of reaction between hydrochloric acid and calcium carbonate slowest?

19 Aqueous ammonia is added to a solution of a metal sulphate.

A green precipitate that is insoluble in excess of the aqueous ammonia forms.

Which metal ion is present?

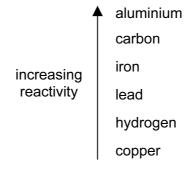

- A Ca²⁺
- B Cu²⁺
- C Fe³⁺
- **D** Fe²⁺

20 The chart shows the colour ranges of four different indicators.

Which indicator is blue in an acidic solution?

	pH value													
indicator	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	yellow → → blue —													
В	— red — blue ← yellow —							v —						
С	red						► ◀			blue				
D	colourless									→ ◀		blue		

21 An ion X in solution is identified as shown.

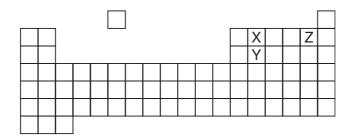

What is ion X?

- **A** Al^{3+} (aq)
- **B** $NH_4^+(aq)$ **C** $NO_3^-(aq)$
- **D** SO₄²⁻(aq)

22 Metals can be joined together by welding them at a high temperature.

Why is an argon atmosphere often used?

- A Argon has a low density.
- **B** Argon is colourless.
- **C** Argon is inexpensive.
- **D** Argon is unreactive.
- 23 Part of the reactivity series is outlined below.

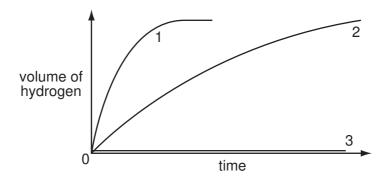


Electrolysis is an expensive way of extraction.

Which metal has to be extracted from its ore by electrolysis?

- **A** aluminium
- **B** copper
- C lead
- **D** iron

24 The diagram shows part of the Periodic Table.


Which statement about elements X, Y and Z is correct?

The proton number of X is

- A seven less than that of Z.
- **B** three less than that of Z.
- **C** one less than that of Y.
- **D** sixteen less than that of Y.

25 Three different metals, Cu, Fe and Mg, are each added to an excess of dilute hydrochloric acid.

The graph shows how rapidly hydrogen is given off.

Which metal gives which curve?

	1	2	3
Α	Fe	Cu	Mg
В	Fe	Mg	Cu
С	Mg	Cu	Fe
D	Mg	Fe	Cu

26 Which substance is a metal?

	electrical conductivity (solid)	electrical conductivity (molten)
Α	high	high
В	high	low
С	low	high
D	low	low

27 Which changes occur when impure iron is made into stainless steel?

	carbon	chromium
Α	added	added
В	added	removed
С	removed	added
D	removed	removed

28 The bodies of an aeroplane, a car and a wheelbarrow are made of metal.

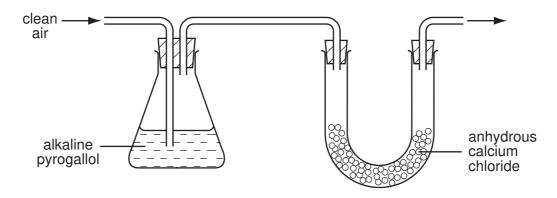
Which metal is used for which body?

	aeroplane	car	wheelbarrow
Α	aluminium	iron	steel
В	aluminium	steel	iron
С	steel	aluminium	iron
D	steel	iron	aluminium

29 What is used to test for the presence of water?

- A anhydrous copper(II) sulphate
- B aqueous barium chloride
- **C** aqueous sodium hydroxide
- **D** Universal indicator paper

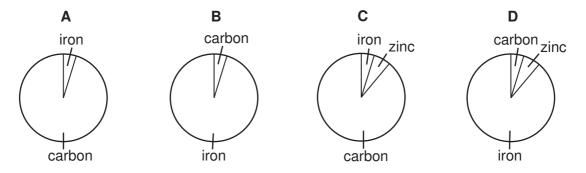
30 A candle is burned in a fixed volume of air.

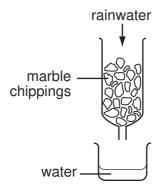

How do the percentages (%) of carbon dioxide and oxygen change?

	carbon dioxide	oxygen
Α	fall	fall
В	fall	rise
С	rise	fall
D	rise	rise

31 Anhydrous calcium chloride is used as a drying agent.

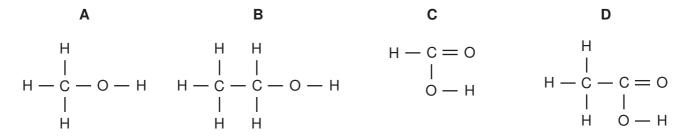
An alkaline solution of pyrogallol absorbs oxygen and carbon dioxide.


Clean air is passed through the apparatus shown.


Which gases are present in the air leaving the apparatus?

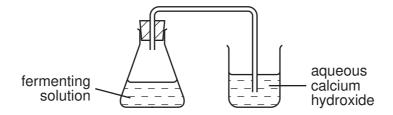
	argon	nitrogen	hydrogen
Α	✓	✓	✓
В	✓	X	✓
С	X	✓	✓
D	✓	✓	X

32 Which chart could represent the composition of a galvanised roof?



- 33 Which statement explains why iron is used as the catalyst in the manufacture of ammonia?
 - A More ammonia is produced in a given time.
 - **B** The catalyst is unchanged at the end of the reaction.
 - C The catalyst neutralises the ammonia.
 - **D** The purity of the ammonia is improved.
- 34 A sample of acid rainwater (pH=4) is passed down a glass column packed with marble chippings (calcium carbonate). The water coming from the bottom of the column is collected in a beaker. The pH is now 6.

What causes the change in pH?


- A The acid has been filtered.
- **B** The acid has been neutralised.
- **C** The acid is made more concentrated.
- **D** The acid is precipitated.
- 35 What are the products when limestone (calcium carbonate) is strongly heated?
 - A calcium hydroxide and carbon dioxide
 - B calcium hydroxide and carbon monoxide
 - C calcium oxide and carbon dioxide
 - **D** calcium oxide and carbon monoxide
- **36** Which compound is ethanol?

- 37 What is petroleum?
 - A an aircraft fuel
 - B a central heating fuel
 - **C** a mixture of carbohydrates
 - **D** a mixture of hydrocarbons
- 38 Methanol and ethanol belong to the same homologous series.

What does this mean?

- A Their molecules contain atoms only of carbon and hydrogen.
- **B** Their molecules have the same number of carbon atoms.
- **C** They have the same functional group.
- **D** They have the same relative molecular mass.
- 39 Which substances can be obtained by cracking hydrocarbons?
 - A ethanol and ethene
 - B ethanol and hydrogen
 - C ethene and hydrogen
 - **D** ethene and poly(ethene)
- **40** The apparatus shown may be used to study the products of fermentation.

What is the purpose of the aqueous calcium hydroxide?

- A to absorb any excess of yeast
- B to condense the ethanol produced
- C to prevent air entering the system
- **D** to show that carbon dioxide is produced

DATA SHEET
The Periodic Table of the Elements

0	Heirum			8 7	Krypton 36	131 Xe	Xenon 54	Rn Radon 86		175	Lutetium 71	
		19 Fluorine 35.5		% Q	romine	127 I	lodine			173		
5			Sulphur 16	79 Se		128 Je		Po		169	Thulium 69	
>		Ę				122 Sb		209 Bi Bismuth				
≥		12 Carbon 6				Sn 119		207 Pb Lead		165	Holmium 67	
=		11 Boron 5	A1 Aluminium 13	² 6		115 In	Indium 49	204 T1 Thallium		162		
					Zinc 30	S 112	Cadmium 48	201 Hg Mercury 80		159		
				64 Cu	Copper 29	108 Ag	Silver 47	197 Au Gold		157	E	
				59 N	Nickel 28	106 Pd	Palladium 46	195 Pt Platinum 78		152	Europium 63	
				₂₉	Cobalt 27	£03	Rhodium 45	192 Ir Iridium			Samarium 62	
	T Hydrogen			56 Fe	Iron 26	101 BC	Ruthenium 44	190 OS Osmium 76		ć	Promethium 61	
				55 Mn	Manganese 25	ည	Technetium 43	186 Re Rhenium 75		144	Neodymium 60	238
					⊢	96 Mo	Molybdenum 42	184 W Tungsten 74			Praseodymium 59	
				51	Vanadium 23	88 Q	Niobium 41	181 Ta Tantalum		140	Cerium 58	232
				48	Titanium 22	ŭ Ž	Zirconium 40	178 # Hafnium 72		1		nic mass
				ور م	Scandium 21	68 >	Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89	d series	series	a = relative atomic mass
=		9 Be Beryllium 4	Mg Magnesium 12	9 G	Calcium 20	∞ ক	Strontium 38	137 Ba Barium 56	226 Ra Radium 88	anthanoic	Actinoid s	n n
_		7 Lithium 3	Na Sodium	66 ×	Potassium 19	82 28	Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L	90-103	
		III	III IV V VII VIII III III	III IV VI VII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIIII VIIII VIIII VIIII VIIII VIIIII VIIIII VIIII VIIIII VIIIII VIIIII VIIIII VIIIII VIIIII VIIIII VIIIII VIIIIII VIIIIII VIIIIII VIIIIII VIIIIII VIIIIII VIIIIII VIIIIII VIIIIII VIIIIIII VIIIIIII VIIIIIII VIIIIIII VIIIIIII VIIIIIIII	1 1 1 1 1 1 1 1 1 1							1

	165 167 169	Dy Ho Er Tm Yb	Holmium Erbium Thulium	60 00 /0		Fm Md	Californium Einsteinium Fermium Mendelevium Nobelium 98 100 101 102
	159	P	Terbium	00		n Bk	97
_		En				Am Cm	Americium Curiu 95 96
	150	Sm	Samarium	20		P.	Plutonium 94
_		Pm	<u>u</u>	5		d N	Neptunium 93
-	4 4	P	- 3	00	238	_	Uranium 92
-	141	ሗ	Praseodymium	0.0		Ъа	Protactinium 91
	140	రి	Cerium	8	232	丘	Thorium 90
0	noid series d series				a = relative atomic mass	X = atomic symbol	b = proton (atomic) number

×

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.